Your conditions: Zifu Wang
  • Soliton Microcombs in Integrated Chalcogenide Microresonators

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Photonic integrated microcombs have enabled advanced applications in optical communication, microwave synthesis, and optical metrology, which in nature unveil an optical dissipative soliton pattern under cavity-enhanced nonlinear processes. The most decisive factor of microcombs lies in the photonic material platforms, where materials with high nonlinearity and in capacity of high-quality chip integration are highly demanded. In this work, we present a home-developed chalcogenide glasses-Ge25Sb10S65 (GeSbS) for the nonlinear photonic integration and for the dissipative soliton microcomb generation. Compared with the current integrated nonlinear platforms, the GeSbS features wider transparency from the visible to 11 um region, stronger nonlinearity, and lower thermo-refractive coefficient, and is CMOS compatible in fabrication. In this platform, we achieve chip-integrated optical microresonators with a quality (Q) factor above 2 x 10^6, and carry out lithographically controlled dispersion engineering. In particular, we demonstrate that both a bright soliton-based microcomb and a dark-pulsed comb are generated in a single microresonator, in its separated fundamental polarized mode families under different dispersion regimes. The overall pumping power is on the ten-milliwatt level, determined by both the high Q-factor and the high material nonlinearity of the microresonator. Our results may contribute to the field of nonlinear photonics with an alternative material platform for highly compact and high-intensity nonlinear interactions, while on the application aspect, contribute to the development of soliton microcombs at low operation power, which is potentially required for monolithically integrated optical frequency combs.

  • Engineered Octave Frequency Comb in Integrated Chalcogenide Dual-ring Microresonators

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Broadband Kerr combs with a flat comb spectral profile are expected in a number of applications, such as high-capacity optical communication. Here, we propose novel concentric dual-ring microresonators (DRMs) for advanced dispersion engineering to tailor the comb spectral profile. The dispersion can be flexibly engineered not only by the cross-section of the DRMs, but also by the gap between concentric dual-ring microresonators, which provides a new path to geometrically control the spectral profile of the soliton Kerr combs. An octave-spanning dissipative Kerr soliton comb with superior spectral flatness has been achieved numerically, covering from the telecommunication band to the mid-infrared (MIR) band region with a -40 dB bandwidth of 1265 nm (99.82 THz). Our results are promising to fully understand the nonlinear dynamics in hybrid modes in DRMs, which helps control broadband comb formation.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China